Monday, October 31, 2016

How Gold Nano-particles Prevent Spreading Pancreatic Cancer?

A diagnosis of pancreatic cancer is often a death sentence because chemotherapy and radiation have little impact on the disease. In the U.S. this year, some 53,000 new cases will be diagnosed, and 42,000 patients will die of the disease. But research could eventually lead to a new type of treatment based on gold nanoparticles.



The recent research, led by scientists at the University of Oklahoma Health Science Center, suggests gold nano-particles can help make existing treatments more effective.

In their experiment involving pancreatic cancer cells and pancreatic stellate cells in a mouse model, the researchers demonstrated that tiny gold particles can be used as a vehicle to carry chemotherapy drug molecules into tumors, or as a target to enhance radiation treatment on tumors.

Scientists have previously studied these tiny gold particles as a vehicle to carry chemotherapy drug molecules into tumors or as a target to enhance the impact of radiation on tumors. In addition, Priyabrata Mukherjee and colleagues previously found that gold nano-particles themselves could limit tumor growth and metastasis in a model of ovarian cancer in mice.

Now, the team has determined that the same holds true for mouse models of pancreatic cancer. But interestingly, the new work revealed details about cellular communication in the area surrounding pancreatic tumors. By interrupting this communication -- which is partly responsible for this cancer's lethal nature -- the particles reduced the cell proliferation and migration that ordinarily occurs near these tumors. Gold nano-particles of the size used in the new study are not toxic to normal cells, the researchers note.



So, it is positive that Gold nano-particles (AuNPs) are excellent tools for cancer cell imaging and basic research.

However, they have yet to reach their full potential in the clinic. At present, the scientists are only beginning to understand the molecular mechanisms that underlie the biological effects of AuNPs, including the structural and functional changes of cancer cells. This knowledge is critical for two aspects of nano-medicine. First, it will define the AuNP-induced events at the sub-cellular and molecular level,

thereby possibly identifying new targets for cancer treatment. Second, it could provide new strategies to improve AuNP-dependent cancer diagnosis and treatment. Third, they carry a good potential to minimize spreading the cancer cells in the body.






Sources and Additional Information:


Related Posts Plugin for WordPress, Blogger...